02 March 2016

Self-Service BI


    According to Gartner, the world's leading information technology research and advisory company, Self-Service BI (aka self-service analytics, ad-hoc analysis, personal analytics), for short SSBI, is a “form of business intelligence (BI) in which line-of-business professionals are enabled and encouraged to perform queries and generate reports on their own, with nominal IT support” [1].

    Reading between the lines, SSBI presumes the existence of an infrastructure made of tools to support it (aka self-service BI tools), direct or indirect access to row data and/or data models for the users, and the skillset needed in order to work with data and answer to business problems/questions.

A Little History

     The concept of self-service is not new, it just got “rebranded” and transformed into a business opportunity. The need for business users to perform ad-hoc analyses was always there in organizations, especially in the ones not having the right infrastructure for harnessing their data. Even since the 90s with the appearance of products like MS Excel or MS Access in many organizations users were forced by the state of art to learn how to use such products in order to get the answers they needed from the data. Users started building personal solutions, many of them temporary, intended to fill the reporting gaps organizations had. With a little effort and relatively small investment users had the possibility of playing with the data, understanding the data, identifying and solving problems in the business. They acquired thus a certain level of business expertise and data awareness becoming valuable resources in the organization.

     With time such solutions grew in scope and data volume, gained broader visibility and reached deeper in organizations, some of them becoming team, departmental or cross-departmental solutions. What grows uncontrolled with time starts to have negative impact on the environment. First tools’ management became a problem because the solutions needed to be backed-up and maintained regularly, then other problems started to surface: security of data, inefficient data processing as increasing volumes of data were processed on local computers and transferred over the network, data and effort were duplicated, different versions of reality existed as different numbers were reported, numbers that were reflecting different definitions, knowledge about the business or data-analysis skillsets. The management needed a more consolidated and standardized effort in order to address these problems. Organizations were forced or embraced the idea of investing money in modern BI solutions, in more powerful servers capable of handling a larger amount of requests, in flexible data models that facilitate data consumption, in data quality initiatives. Thus through various projects a considerable number of such solutions were converted into more standardized and performant BI solutions, the IT department being in control of the changes and new requests.

Back to Present

    With IT in control of the reporting requirements the business is forced to rely on the rapidity with which IT is able to address new requirements. Some organizations acquired internal resources in order to build reports and afferent infrastructure in-house, others created partnerships with vendors, or approached a combination of the two. As the volume of requirements isn’t uniform over time, the business has to wait several days between the time a requirement was addressed to IT and a solution was provided. In business terms a few of days of waiting for data can equate with the loss of an opportunity, a decision taken too late, decision that could have broader impact.

     A few years ago things started to change when the ad-hoc analysis concept was rebranded as self-service and surfaced as trend. This time vendors like Qlik, Tableau, MicroStrategy or Microsoft, some of the main SSBI vendors, are offering easy to use and rich in functionality tools for data integration, visualization and discovery, tools that reflect the advances made in graphics, data storage and processing technologies (e.g. in-memory databases, parallel processing). With just a few drag-and-drops users are able to display details, aggregate data, identify trends and correlations between data. In addition the tools can make use of the existing data models available in data warehouses, data marts and other types of data repositories, including the rich set of open data available on the web.

Looking at the Future

   Like its predecessors SSBI seems to address primarily data analysts and data-aware business users, however in time is expected to be adopted by more organizations and become more mature where already adopted. Of course, some of the problems from the early days more likely will resurface though through governance, better architectures and tools, integration with other BI capabilities, trainings and awareness most of the problems will be overcome. More likely there will be also organizations in which SSBI will fail. In the end each organization will need to find by itself the value of SSBI.

[1] Gartner (2016) Self-Service Analytics [Online] Available from: http://www.gartner.com/it-glossary/self-service-analytics
] Gartner (2016) Magic Quadrant for Business Intelligence and Analytics Platforms, by Josh Parenteau, Rita L. Sallam, Cindi Howson, Joao Tapadinhas, Kurt Schlegel, Thomas W. Oestreich [Online] Available from: https://www.gartner.com/doc/reprints?id=1-2XXET8P&ct=160204&st=sb